An Initial Assessment of the Effects of Sea Level Rise on Coastal Hazards in California

Photo by D. Revell - 2/23/08

6th Annual California Climate Change Conference 9/9/9

Dr. David Revell, et al...

Robert Battalio, P.E., Justin Vandever, Brian Spear, Dr. Cheryl Hapke, Dr. Peter Ruggiero, Dr. Gary Griggs...

Outline

- Background
- Evaluate future erosion and flooding hazards using the best available data sets, for multiple planning horizons... and hurry!
- Project Objectives
- Map Flood and Erosion Hazards
- Identify vulnerable infrastructure
- Overview of Methods
- Results
- Adaptation Case Studies
- Policy Recommendations

General Approach - Vulnerability

- Adopt CA climate scenarios from CEC projects
 - (Cayan et al... A2 1.4m)
- Expand 1990 Pacific Institute Study of SF Bay
- Map future flood & erosion hazards for CA coast
- Quantify populations and infrastructure at risk
- Offer policy guidance and recommendations

Risk - Mapping Flood Hazards

- Review all existing FEMA Flood Insurance Studies
- Extract Coastal Base Flood Elevations into GIS
- Add Sea level rise scenarios to BFE elevations
- Map inundation using terrain datasets
- Method 2 Calculated 100yr TWL at ~4100 sites

Inundation Maps

Risk - Mapping Erosion Hazards

Total Water Levels

- Sea Level Rise
- Tides
- · Wave Run-up
- Storm Surge
- El Ninos

Climate Change

- Sea Level Rise
- Wave Climate

Elevation of the Toe of Cliff or Dune

Causes

Erosion Response

- Backshore Type
- Geology
- Failure Mechanism
- Shoreline Change

Shore Change

- Accelerated Erosion
- Inland Migration of Shore
- Loss of Upland

Study Area - Erosion

Oregon Border to Santa Barbara Harbor

Gaps -

- Lost Coast
- Big Sur
- Devils Slide

So. Cal - Other studies

USGS – Coastal Hazards

San Diego Foundation

CEC - Scripps Adams and Inman

Why didn't you do SoCal?!

Backshore Types

- Dune/Inlet
- Cliff/ Bluff
- Landslide
- Armored

GIS data:

Shoreline Inventory, Geology, Armoring, Landslides, LIDAR, Bathymetry, Sandy Shoreline change rates, Cliff Erosion rates.

Non GIS references:

Griggs et al Living with the Changing California Coast 2005 California Coastal Records Project

Total Water Level, TWL = "measured" Tides, (T) + Wave Runup, (R)

- **T** = Sea level rise scenarios (Cayan et al), 100 years at 3 hour tides coupled waves and storm effects (ENSO, surge) for 2 scenarios 2 locations San Francisco, Crescent City
- **R** = Wave run-up Deepwater waves (Cayan et al) for three sites Pt. Conception, San Francisco, Crescent City
 - CDIP models to transform waves at 140 nearshore locations at 10m
 - Calculated wave run-up (Stockdon et al 2006).

Total Water Levels

- Combined SLR and Wave Run-up
- Generate excedance curves for each subdivided geologic block using individual slopes and toe elevations

Dune Erosion Model

- 3 components
 - Changes in TWL from SLR combined with shoreface slope
 - Historic shoreline trends (USGS)
 - Impact of a "100 year storm event"

Dune Hazard Zones

ENVIRONMENTAL HYDROLOGY

Cliff Erosion Model

- Acceleration of historic erosion rates (Rh)
- Prorated based on % increase in TWL exceeding the elevation of the toe of the beach/cliff junction
- Include geologic unit standard deviation x planning horizon to account for alongshore variability

Cliff Hazard Zones

ENVIRONMENTAL HYDROLOGY

Air Photo from 2005

Del Norte County **Dune Erosion** Results - Dunes Max 345 - 400 Sea Level Rise 1.4m by 2100 Average erosion (meters) an mum erosion (meters) Humboldt County Avg. 130 - 180 Max 540 - 600 Revell et al in prep Mendacina County Avg 145 185 Max 420 - 435 Sonoma County Avg 110-150 Max 290 - 370 Marin County Ang 90 135 Mux. 196 - 273 San Francisco County Avg 130 165 Max. 180 - 230 an Mateo County Avo 180 - 220 Max 390 - 433 Majority of Norcal "accreting" anta Cruz County Avg 125-136 Max 500 - 540 Accreting to Erosion reversal in Monterey County A+3 190 190 sign seen between 2050 and 2100 San Luis Obispo County •300 km or 185 miles Avg. 120-160 Max 300 - 34 Avg. 160-205 ENVIRONMENTAL HYDROLOGY 600 400 200 Kilometers Dune Erosion Distance (m) 200

Results - Total Erosion*

Total erosion miles ² (km ²)
4.5 (11.7)
6.1 (15.8)
8.3 (21.5)
2.2 (5.7)
4.7 (12.2)
0.5 (1.4)
3.2 (8.3)
1.8 (4.7)
4.4 (11.4)
2.9 (7.5)
2.6 (6.7)
41 (213.8)

:a

There is an inherent conflict between the static property boundaries and the dynamic shoreline....

We need to continue to evolve our thinking to incorporate future changes.

Coastal Armoring Tradeoffs – Fort Ord

Removal of Shoreline armoring is possible in some cases and the coast can be restored.

2002

Source: California Coastal Records Project

Surfer's Point – A Current Opportunity

Policy and Management Recommendations # 1

- 1. Integrate future sea level rise and accelerating erosion into coastal policies CA LCP, LUP revisions, Vision
- 2. Limit scales of development in areas at risk from SLR setbacks, size of development, uses.
- 3. Preserve adjacent uplands to keep options open.
- Maintain historic ecological linkages between oceans, beaches, dunes, and wetlands – MLPA, RSM.
- 5. Cost-benefit analyses should explicitly evaluate the social, recreational and environmental tradeoffs of adaptation strategies. Multiple time horizons...

Policy and Management Recommendations # dos

- Adopt policies to avoid future erosion hazardse.g. managed retreat, rolling easements, transfer dev.
- 7. Have future seawalls bonded to have upfront costs for removal, maintenance at end of structure life/ nuisance
- 8. Review flood insurance programs in light of SLR
- Conduct local vulnerability assessment of future erosion and flooding hazards
- 10. Communicate results with the planning jurisdictions and policy decisions makers...

Long term vision...

Study Products

Photo by P. Barnard

- Methodology for evaluating coastal erosion and SLR for different backshore types
- Down-scalable model for evaluating local impacts of climate change
- GIS erosion hazard zones of two scenarios at 3 planning horizons
- Flood elevations for the CA coast
- Estimates of future erosion rates
- Erosion rates by geologic unit

Revell et al in prep

Future Research Needs

Photo by D. Revell - 12/07/07

- New LIDAR flight top of bluffs, 10m contour; bathymetry
- Long term monitoring
 – seasonal and storm response of sand levels, slopes, toe elevations, widths
- Ensemble of GCM outputs
- Levee and coastal structure evaluation
- Ecological and physical linkages important for erosion reduction
- More detailed localized and regional studies
- Tectonic uplift/subsidence rates along the coast
- Higher resolution geology rock hardness, failure mechanisms
- Changes to fluvial flooding from elevated sea levels

Acknowledgements

- Ocean Protection Council Chris Blackburn
- PWA –Justin Vandever, Brian Spear, Jeremy Lowe, Seungjin Baek, and Damien Kunz
- Pacific Institute Peter Gleick, Matt Heberger, Heather Cooley
- Expert Review Gary Griggs, Cheryl Hapke, Peter Ruggiero, Lesley Ewing, Adam Young, Patrick Barnard and Nicole Kinsman
- Scripps –Ron Flick, Peter Bromirski, Nick Graham
- USGS Dan Cayan, Patrick Barnard
- CDIP Bill O'Reilly, Julie Thomas
- DCE Planning Brian Fulfrost
- OST Amber Mace

THANK YOU!!!

For More Information

David Revell

d.revell@pwa-ltd.com

Report

http://www.energy.ca.gov/publications/ displayOneReport.php? pubNum=PWAOPC-1000-2009-013

GIS Data - Results

http://www.pacinst.org/reports/sea_level_riseAndex.htm

Erosion Method - Limitations

- •Input Data Sets Accuracy
- Potential erosion not actual
- Single Climate Model Output
 - not an ensemble
 - no calibration of erosion rates with existing TWL data
- •Single wave time series
 - no trends in wave climate
 - waves transformed to 10m
- •GIS buffering algorithms
- •LIDAR
 - post El Nino conditions are indicative of 2008

- Equilibrium profile application
- Assumed increase in erosion rates is linear
- Feedback mechanisms ignored
- Shoreline Change Rates
 - •Impact of 1998 Lidar uncertain
 - LT rates may not be indicative of current trends

Sea Level Changes

Time Scales of Climate Change Impacts

IPCC

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

